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OVERVIEW

Why do we need one-loop amplitudes?
e Limitations of standard techniques.

The “Unitarity bootstrap technique” - an
efficient method for calculating one-loop
amplitudes.

Construct amplitude in two pieces,

* On-shell recursion relations,
* Generalised unitarity techniques.

Focus on generalised unitarity
techniques/direct extraction methods.




WHAT'S THE PROBLEM?

QCD amplitudes are needed to understand the results from
colliders- Tevatron and LHC (2007).




PRECISE QCD CALCULATIONS

Probe beyond the Standard Model,

New particles typically decay into old
particles,

Signals in discovery channels can be
close to backgrounds,

Maximise discovery potential
= Precise understating of background
processes.

Measurements of
fundamental parameters (&, m,),
Luminosity,
Extraction of parton distributions, etc.
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WHAT DO WE NEED?

“Famous” Les Houches list, (2005)

process background to

(V e {Z, W7D

.\ ttH . new physics

\pp — H + 2jets W}f vector boson fusion (VBF)
\pp — ttbb ttH WW-+j: Campbell, Ellis, Zanderighi.
Ipp — tt + 2jets ttH Dittmaier, Kallweit, Uwer.
1lpp — VV bb VBF— H — V'V ttH, new physics

- BF— H — V'V

}OUs~new physics signatures
trileptorr VBF: Bozzi, Jager, Oleari, Zeppenfe
\ —/Z/Z:. Lazopoulos, Petriello, Melnikov
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Five, six or more legs.



WHAT'S THE HOLD UP?

Gauge dependant
quantities,

. ! : ! large cancellations
Calculating using Feynman diagrams is Hard!  ,ctween terms.

A Factorial growth in the number of terms.

~10,000
diagrams.

~150,000
diagrams.

more than
3 million.

o0
diagrams.

Numerical approaches

More efficient techniques desired.



SIMPLE RESULTS!

Calculated amplitudes simpler than expected.

For example, tree level all-multiplicity gluon amplitudes
[Parke, Taylor] MHV Amplitude

Spinor helicity
+  notation

|
(12)(23)...((n—1)n)(n1)

+

The problem with Feynman diagrams

Gauge dependent,

Contain off-shell vertices and propagators.
Want to use on-shell quantities only.



SPINOR HELICITY METHOD

Appropriate choice of variables gives simpler/more
compact results.

Write amplitude using spinors, objects with definite
helicity h=%1.

A=li)=ut) A=li)=uw) G- G-

Rewrite all vectors in terms of spinors e.g. polarisation
VECtors [Xu, Zhang, Chang]
(a7, k)

AL,
R )

Amplitude is now written entirely in terms of spinors.

and ¢, (k,q) =




SPINOR PRODUCTS

Two different spinor products,

u_(ky)u, (k,) = <1_
u, (kpu_(k,) = <1+

Spinors related to 4-vectors

2)
2)

<12> =g AN
[12] I gab;’lazg

k“ =c A2 A2 and K = u(k)u (k).
Spinor products related to Lorentz products
(ab)[ba]=s,, = (k, +k;)



COMPLEX SPINORS

~

For complex spinors A # A4,

Spinor products are independent (ab) « [ba].
Some 3-point vertices no longer vanish,

Momentum conservation = p;.p,=p,.p3=pP;.pP3=0.

p

For real momentum 1
p.q={pa)[gp]=0 = (pg)=0and [gp]=0.
For complex momentum
p-q=(pq)lap]=0 = (pg)=0or[gp]=0.
The 3-point vertex can survive, e.g. for gluons
i(pa)

(ar){rp)

i[pa]

As(p—’q—’r+): [qr][rp]

=0 or A(p".q".1r") =

=0.



STRUCTURE OF A 1-LOOP AMPLITUDE

The analytic form of a 1-loop amplitude is made up of

R , G . G
e ) TR TN
S _=

S—

S Associate with 1
Branch Cuts “noles” Unitarity bootstrap

NN

Unitarity :l_-_ On-shell recursion ]

Consider the amplitude as a “function” on the complex plane,
it will contain branch cuts and poles.

Use the most appropriate technique for each piece.



AMPLITUDES AND THE COMPLEX PLANE

An amplitude is a function of its external momenta (and helicity)

6D k™)

)= -2r | ) B (@)= o))

Shift the momentum of two external legs by a complex variable z,
[Britto, Cachazo, Feng, Witten]

Only possible with
=Keeps both k; and k; on-shell. Complex momenta.
Conserves momentum in the amplitudes:

For example 4 Pole at -<235/<13> L4

A®@d,2°,3,4%)=




A SIMPLE IDEA

Function of a complex variable containing only simple poles

(i
ﬂ>(p°'e 1) Al |l A (2)
. . ﬂi} S L ,6\1(O)=—IgllesResZ :
k‘>< A, (0), the amplitude with real momentum

Position of all poles from complex factorisation properties of
the amplitude. Poles from here

[(@.3.R(B)

=) Res A2)

poles Z



ON-SHELL RECURSION RELATIONS

Recursion using on-shell amplitzudes with fewer legs, :
P2l i Ll LR DR
(i‘mj‘><l i) o +<i—‘Jj‘j—><l 7|5)

Two reference legs “shifted”, i* 1" -

Intermediate momentum leg is on-shell.

Final result independent of choice of shift.

Complete amplitude at tree level. [Britto, cachazo, Feng]
+[Witten]



BRANCH CUTS

What about loops”?

Shift the amplitude in the same
way

A (kY. J”kfiqi‘)%@kj,y(‘zb]}k:) /// 77

Integrate over a
CirCIe at infinity

Branch cuts 4z @) g

Contribution
from circle at infinity

' 2i72' 4 /
[Infﬂh](z) ZRes A‘(Z) j —DISC A(Z) A(0)
" poles "

From on-shell From on-shell From Unitarity techniques
recurrence relation recurrence relation



UNITARITY CUTTING TECHNIQUES

Basic idea, glue together tree amplitudes to form loops.

[Bern,Dixon,Dunbar,Kosower]

On-shell tree amplitudes
—> Compact loop result

“Cut-constructible” terms from gluing together trees in D=4,

[Bern, Dixon, Dunbar, Kosower]

Missing rational pieces in QCD = use on-shell recursion.
Alternatively work in D:4-28, [Bern, Morgan], [Anastasiou, Britto, Feng, Kunszt,

Mastrolia]

Gives both terms but requires trees in D=4-2¢.
Extract “cut-constructible” pieces in the most efficient way.



ONE-LOOP INTEGRAL BASIS

A one-loop amplitude decomposes into  Rational coefficients
Rational terms

/Q %

1-loop scalar mtegrals

Quadruple cuts freeze theintegral = bOXES [sritto, Cachazo, Feng]




TWO-PARTICLE AND TRIPLE CUTS

What about bubble and triangle terms?  Additional coefficients
Triple cut = Scalar triangle coefficients?

Disentangle these coefficients. Isolates a single triangle



DISENTANGELING COEFFICIENTS

Approaches,
Unitarity technique, [sern, Dixon, Dunbar, Kosower]
MHV vertex teChniqueS, [Bedford, Brandhuber, Spence, Traviglini], [Quigley,

Rozali]

Unitarity cuts & integration of spinors, [sritto, Cachazo, Feng] +

[Mastrolia] + [Anastasiou, Kunszt]

Recursion relations, [Bern, Bjerrum-Bohr, Dunbar, Ita]

Solving for coefficients, [ossola, Papadopoulos, Pittaul, [Ellis, Giele, Kunszt]
Large numbers of processes required for the LHC,

Automatable and efficient techniques desirable.



TRIANGLE COEFFICIENTS

Coefficients, ¢, of the triangle integral, Cy(K;,K;), given by

Inf 0‘@ Masslessly Projected

Ij’

momentum
S
1Kb Kb:K __2Kb
Single free integral pardmeter i y St VAY
5 (r=S) ¢ b— 88(7 SO =S,) /e
|“ = K
yssl+2122272 SS)<y
Triple cut of the triangle Cy(K;,K)) y=(K | K7 |K)

Series expagision around t at infinity, take
only non-nggative powers —

+a1t1+a2t2+...+am

=3 in renormalisable theories




[Nagy, Soper], [Binoth, Heinrich, Gehrmann, Mastrolia], [Ossola, Papadopoulos, Pittau]

SIX PHOTONS

6 A‘s top and bottom
3-mass triangle of Ag(-+- 5y -+) = the tripfe cut integrand

16 A(—1™",1°-B2i {E <v 32—%—”‘ 671"
11 |2?><’|14><2 4)(16)(18)" " Extra propagator

— Box terms

h

No prépagator = Triangle

Propagator « pole inzt

o S(r-S,
(12)=t(K.2)+ %< ki
—> a box.

> solutions o 7 = divide € Scalar triangle coefficient
The complete coefficient.



VANISHING INTEGRALS

- From series expanding the box poles
In genexalseries expansion of A;A,A; around t =oo gjives,

aojdt+a1jd +...+amaxj'd;1/€ax

Integrals over t panish for chosen parameterisation, e.g.

(Similar argument to [Osgola, Papadopoulos, Pittau])
h—
(i1

KJ
[ dtt~ [d T : >~<Kf\/y{\r<g>cl+<|<f%\r<g>c2:o
172

In general whqle coefficient given by

©=—[inf ARA](L)]




ANOTHER TRIANGLE COEFFICIENT

3-mass triangle coefficient ofe’€” —>q'q g g" in the
14:23:56 channel. [Bern, Dixon, Kosower]




WHAT ABOUT BUBBLES?

Can we do something similar?
Two delta function constraints = two free parameters y and

t

Depends upon an arbitrary massless four vector)(.

"

Naive generalisation, two particle cut = bubble coefficient bj
of the scalar bubble integral By(K;)?

b, #| Inf[Inf AA](y) | ()

Does not give the complete result.



VANISHING INTEGRALS?

Series expanding around o« in y and then t gives

1) ALY

triangles/boxes? “Omaxt " Umaxt J max s rhakhm;@x); m’
Integrals overt vanish

[dtt™=0 and jdtiizo
t
Integrals over y do not vanish, can show

jdyyi—Hljdy



MISSING CONTRIBUTIONS

Integrals over t can be related to bubble contributions.
Terms with poles iny

Schematically we write the two-particle thegl%md as,

G +3, (O + -+ B, (Y™ esy:yiAL(l(y,t))AR(l y

y .
in the residue terms I(y,,t) T 1T} = fixed at pole y

.Kbﬂ-l—s(l yl))( A E <Kb ‘7/ ‘Z> Yi 'i\<Klb+ % +>

y 2 T2
Want to associate pole terms with triangles (and boxes).
Unlike for previous triangle coefficients though,
[ (K K| o (K [ ) =0

Integrals over t do not vanish in this expansion
—> can contain bubbles

|“ =y



AN EXAMPLE

Extract the bubble coeff in three-mass linear triangle,
J‘ 4 <a_"l/‘b_>
1°(1-K)*(1-K,)?

Cut |2 and (I-K,)? propagators, gives integrand

Series expand y and <ambz>
then t around o, (I1-K;)
sett >0, y" > —— ™
m+1 b
’ <aZ>[Klb]
(r | KK

Depends upon y and is not the complete coefficient.



REMAINING PIECES

Consider all triangles sitting “above” the bubble.
Then extract bubble term from the integrals over {,
l.e. using

_% > [Inf, AAA](t) |ti—>T(i)

{Cui}
Integrals over t known, (C;; a constant, e.g. C;;=1/2)

i <Z_‘K2 ‘ I{1—>I (Kl-Kz)i_1 i §1y

| . (S
dtt’ = [dtT (i) =| C. B (K
Jo' = e (7] (K.K,) =SS, ,le (KK, o)

Renormalisable theories, max power te.

Combining both “two-particle” cut terms and “triple-cut” terms
gives the coefficient.



FINISHING OFF THE EXAMPLE

Setting y=a puts the two-particle cut contribution to zero

<a;(>[K1bb] ;(:—;ao
<Z_ ‘Kg ‘ Klb_> Only a single power of t

We have one term from the “triple-c
IKGIKT) -S(a | Ky |a) |, [ab] )

S(a” | K, | K™) [K,b]
The integral over t is related to the bubble via,

2y )(K.K,) =SS,

K by 28

So the complete coefficient is given by

| Sl SRl

2 (Kl'K2)2 _Slsz (Kl'K2)2 _8182



A QUICK RECAP

Calculate one-loop integral coefficients,
For Triangles

=—[Inf AAA](1)

t—0

For Bubbles

% Z [Inft’AlAzAs](t) ‘ti—>T(i)

m +1 {Ctri }

b, =—i[ Inf [Inf AA,] (y)](t)\

t—>0,y"—>

Boxes from quadruple cuts (four cuts freeze the
integral).



FURTHER EXAMPLES

Comparisons against the literature
Two minus all gluon bubble coefficients for up to 7 legs.

[Bern, Dixon, Dunbar, Kosower], [Bedford, Brandhuber, Spence, Travigini]

N=1 SUSY gluonic three-mass triangles for Ag(+-+-+-),
A6(+-++“). [Britto, Cachazo, Feng]

Various bubble and triangle coefficients for processes
of the type e'e — q+q—g—gf [Bern, Dixon, Kosower]

Analyses of the behaviour of one-loop gravity amplitudes,
including N=8 Su pergravity. [Bern, carrasco, DF, Ita, Johansson]



“ON-SHELL BOOTSTRAP APPROACH”

Has been used to calculate

2 minus all- mU|tIp|ICIty amplltudes [DF, Kosower] [Berger Bern,
Dixon, DF, Kosower]

3-minus split helicity amplitude. [Berger, Bern, Dixon, DF, Kosower]

Important contributions to the complete analytic form

for the 6 gluon amplitude [Bern,bixon,Kosower]

[Berger,Bern,Dixon,DF,Kosower] [Xiao,Yang,Zhu]
[Bedford,Brandhuber,Spence, Travaglini] [Britto,Feng,Mastrolia] [Bern,Bjerrum-
Bohr,Dunbar,lta], (Numerical result [Ellis, Giele, Zanderighi])

Small growth in complexity of solutions as number of
external legs increases.



CONCLUSION

Direct extraction
of coefficients in
2 simple steps,

Unitarity
bootstrap
approach

combines e Specific momentum

parameterisation.

e Series expansion in
free parameters at
infinity.

* On-shell recursion
relations.

e Unitarity techniques.

Leads to an
automatable
procedure for

one-loop
computation.

“One of the most remarkable discoveries in elementary particle physics has been that of the

existence of the complex plane. ” In J. Schwinger, “Particles, Sources and Fields”, Vol. I.




